Analysis of BvgA activation of the pertactin gene promoter in Bordetella pertussis.
نویسندگان
چکیده
Bordetella pertussis, the causative agent of whooping cough, regulates expression of its virulence factors via a two-component signal transduction system encoded by the bvg regulatory locus. It has been shown by activation kinetics that several of the virulence factors are differentially regulated. fha is transcribed at 10 min following an inducing signal, while ptx is not transcribed until 2 to 4 h after the inducing signal. We present data indicating that prn is transcribed at 1 h, an intermediate time compared to those of fha and ptx. We have identified cis-acting sequences necessary for expression of prn in B. pertussis by using prn-lac fusions containing alterations in the sequence upstream of the prn open reading frame. In vitro transcription and DNase I footprinting analyses provided evidence to support our hypothesis that BvgA binds to this sequence upstream of prn to activate transcription from the promoter. Our genetic data indicate that the region critical for prn activation extends upstream to position -84. However, these data do not support the location of the prn transcription start site as previously published. We used a number of methods, including prn-lac fusions, reverse transcriptase PCR, and 5' rapid amplification of cDNA ends, to localize and identify the bvg-dependent 5' end of the prn transcript to the cytosine at -125 with respect to the published start site.
منابع مشابه
Analysis of bvgR expression in Bordetella pertussis.
Bordetella pertussis, the causative agent of whooping cough, produces a wide array of factors that are associated with its ability to cause disease. The expression and regulation of these virulence factors are dependent upon the bvg locus, which encodes three proteins: BvgA, a 23-kDa cytoplasmic protein; BvgS, a 135-kDa transmembrane protein; and BvgR, a 32-kDa protein. It is hypothesized that ...
متن کاملThe Bordetella pertussis model of exquisite gene control by the global transcription factor BvgA.
Bordetella pertussis causes whooping cough, an infectious disease that is reemerging despite widespread vaccination. A more complete understanding of B. pertussis pathogenic mechanisms will involve unravelling the regulation of its impressive arsenal of virulence factors. Here we review the action of the B. pertussis response regulator BvgA in the context of what is known about bacterial RNA po...
متن کاملCloning and sequencing of a Bordetella pertussis serum resistance locus.
We have characterized a new virulence factor in Bordetella pertussis: serum resistance. Compared with Escherichia coli HB101, wild-type B. pertussis was relatively resistant to classical-pathway, complement-dependent killing by normal human serum. However, a mutant of B. pertussis (BPM2041) which is less virulent in mice and which has Tn5 lac inserted in a previously uncharacterized bvg-regulat...
متن کاملCharacterization of DNA binding sites for the BvgA protein of Bordetella pertussis.
Expression of virulence-associated genes in Bordetella pertussis is under the control of the pleiotropic regulator BvgA. Although previous studies have identified recognition sequences for BvgA in several promoter regions, their structures have not been clearly characterized. We show that the BvgA binding sites within the bvgp(1) and cyaA promoters consist of inverted repeats and suggest that i...
متن کاملBordetella pertussis fim3 gene regulation by BvgA: phosphorylation controls the formation of inactive vs. active transcription complexes.
Two-component systems [sensor kinase/response regulator (RR)] are major tools used by microorganisms to adapt to environmental conditions. RR phosphorylation is typically required for gene activation, but few studies have addressed how and if phosphorylation affects specific steps during transcription initiation. We characterized transcription complexes made with RNA polymerase and the Bordetel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 181 17 شماره
صفحات -
تاریخ انتشار 1999